[1] J. Lyu, J. Pei, Y. Z. Guo, J. Gong, H. L. Li.* A new opportunity for 2D van der Waals heterostructures: making steep‐slope transistors. Advanced Materials, 2020, 32(2), 1906000. [2] J. Lyu, J. Gong,* H. L. Li.* Harnessing defects for high-performance MoS2 tunneling field-effect transistors. Materials Research Letters, 2023, 11(4), 266. [3] R. Y. Wang, J. Lyu,* J. Gong.* Strain Benefits of monolayer α-GeTe and its application in low-power metal-oxide-semiconductor field-effect transistors. Physica Status Solidi-Rapid Research Letters, 2022, 16(11), 2200174 [4] J. Lyu, J. Gong.* Simulation of a steep-slope p- and n-type HfS2/MoTe2 field-effect transistor with the hybrid transport mechanism. Nanomaterials, 2023, 13(4), 649. [5] J. Lu, Z. Q. Fan*, J. Gong*, J. Z. Chen, M. D. Huhe, Y. Y. Zhang, S. Y. Yang, X. W. Jiang, Enhancement of tunneling current in phosphorene tunnel field effect transistors by surface defects. Physical Chemistry Chemical Physics, 2018, 20(8), 5699. [7] J. Lu, Z. Q. Fan*, J. Gong*, X. W. Jiang, Ab initio performance predictions of single-layer In-V tunnel field-effect transistors. Physical Chemistry Chemical Physics, 2017, 19(30), 20121. [6] J. Lu, Z. Q. Fan, J. Gong*, X. W. Jiang*, Ab initio simulation study of defect assisted Zener tunneling in GaAs diode. Aip Advances, 2017, 7(6), 065302. [7] X. W. Jiang*, J. Lu, Jian Gong, et al. ab initio simulation on mono-layer MoS2 tunnel FET: Impact of metal contact configuration and defect assisted tunneling, 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Hangzhou, P.R. China, 2016.10.25-10.28. [8] Z. Y. Jin, J. Lu, H. L. Jia, W. H. Liu, H. L. Li,* Z. h. Chen, X. Lin, G. Q. Xie, X. J. Liu,* S. H. Sun, and H. J. Qiu.* Nanoporous Al‐Ni‐Co‐Ir‐Mo High‐Entropy Alloy for Record‐High Water Splitting Activity in Acidic Environments. Small, 2019, 15(47), 1904180. [9] Z. Y. Jin, J. Lyu, K.L. Hu, Z. H. Chen, G. Q. Xie, X. J. Liu, X. Lin, H. J. Qiu.* Eight-Component Nanoporous High-Entropy Oxides with Low Ru Contents as High-Performance Bifunctional Catalysts in Zn-Air Batteries. Small, 2022, 2107207. [10] Z. Y. Jin,J. Lyu,Y. L. Zhao*,H. L. Li*,Z. H. Chen, X. L, G. Q. Xie, X. J. Liu, J. J. Kai, H. J. Qiu.* Top-down Synthesis of Noble Metal Particles on High-Entropy Oxide Supports for Electrocatalysis. Chemistry of materials, 2021, 202133(5), 1771. [11] Z. Y. Jin, J. Lyu,Y. L. Zhao, H. L. Li,* X. Lin, G. Q. Xie, X. J. Liu, J. J. Kai, H. J. Qiu.* Rugged high-entropy alloy nanowires with in situ formed surface spinel oxide as highly stable electrocatalyst in Zn-air batteries. ACS Materials Letters, 2020, 2(12), 1698. [12] Z. Y. Zhang, T. R. Li, Y. J. Wu, Y. J. Jia, C. W. Tan, X. T. Xu, G. R. Wang, J. Lv, W. Zhang*, Y. H. He, J. Pei, C. Ma, G. Q. Li, H. Z. Xu, L. P. Shi*, H. L. Peng*, H. L. Li*, Truly Concomitant and Independently Expressed Short- and Long-Term Plasticity in a Bi2O2Se-Based Three-Terminal Memristor, Advanced materials, 2019, 31(3), e1805769. [13] P. Du, K. L. Hu, J. Lyu, H. L. Li,* X. Lin, G. Q. Xie, X. J. Liu, Y. Itob,*, H. J. Qiu,* Anchoring Mo single atoms/clusters and N on edge-rich nanoporous holey graphene as bifunctional air electrode in Zn−air batteries, Applied Catalysis B: Environmental, 2020, 276(5), 119172. |