1. Yuan Qu,* Ning Zhuo, Feng-Qi Liu, and Jun-Wei Luo, Emission linewidth broadening in quantum cascade lasers induced by multiple intersubband transitions. Physics Review B 109, 235304 (2024.06) 2. J. X. Wang, Y. Qu, S. L. Ban, Ternary mixed crystal effects on optical phonons in wurtzite ZnO quantum wells with asymmetric MgZnO barriers. Micro and Nanostructures 184, 207685(2023.10) 3. Y. Wu, N. Gao, Y. Qu, S. L. Ban, Resonant Tunneling Effects on the Double-Barrier Electron Blocking Layer of a Nitride Deep-UV Light-Emitting Diode. Phys. Status Solidi B 260(10): 2300063 (2023.06) 4. J. X. Wang, Y. Qu, S. L. Ban, Effects of asymmetric MgZnO barriers on polar optical phonon-limited electron mobility in wurtzite ZnO thin films. Journal of Applied Physics 133(7): 064502 (2023.02) 5. Z. X. Xue, Y. Qu, S.L. Ban, Optical phonons in core-shell semiconductor prism nanowires affected by the cross-section shape. Micro and Nanostructures 166: 207233 (2022.04). 6. D. Y. Jia, Y. Qu*, and S. L. Ban, Enhancement of optical phonons limited electron mobility in an AlGaN stepshaped quantum well. AIP Advances 12, 035206 (2022.03). 7. Z. X. Xue, Y. Qu*, and S. L. Ban, Optical phonon limited electron mobility in ZnO nanowires wrapped by MgZnO shells. Journal of Applied Physics 131, 025104 (2022.01). 8. Z. X. Xue, Y. Qu*, and S. L. Ban, Broadening of the optical absorption spectrum in ZnO nanowire induced by Mixed-phase MgxZn1-xO shell. Journal of Applied Physics 129, (2) 024502 (2021). 9. J. X. Wang, Y. Qu*, and S. L. Ban, Optical phonons and their transformation in cylindrical wurtzite core-multishell nanowires with ternary mixed crystal effect. Journal of Applied Physics 127, 065706 (2020) 10. S. F. Ma, Y. Qu, and S. L. Ban*, Intersubband optical absorption of electrons in double parabolic quantum wells of Al��Ga1−��As/Al��Ga1−��As. Chin. Phys. B, 27(2), 027103 (2018) 11. X. M. Cao, W. H. Liu, X. C. Yang, Y. Qu and Y. Xing*, Interband optical absorption in wurtzite GaN/InxGa1−xN/GaN spherical quantum dots with built-in electric field. Modern Physics Letters B 33 (30), 1950367 (2019) 12. Z. Gu, S. L. Ban, D. D. Jiang, and Y. Qu*, Effects of Two-mode Transverse Optical Phonons in Bulk Wurtzite AlGaN on Electronic Mobility in AlGaN/GaN Quantum Wells. Journal of Applied Physics, 121, 035703 (2017). 13. W. H. Liu, Y. Qu*, S. L. Ban, Electron mobility limited by optical phonons in wurtzite InGaN/GaN core-shell nanowires. Journal of Applied Physics, 122, 115104 (2017). 14. W. H. Liu, Y. Qu*, S. L. Ban, Intersubband optical absorption between multi energy levels of electrons in InGaN/GaN spherical core-shell quantum dots. Superlattices and Microstructures 102, 373-381(2017). 15. Y. H. Zan, S. L. Ban*,Y. J. Chai, Y. Qu, Acoustic phonon modes in asymmetric AlxGa1-xN/GaN/AlyGa1-yN quantum wells. Superlattices and Microstructures 102, 64-73 (2017). 16. Z. Gu, Z. N. Zhu, M. M. Wang, Y.Q. Wang, M. S. Wang, Y. Qu, S. L. Ban*, Interband optical absorption in wurtzite MgxZn1−xO/ZnO/MgyZn1−yO asymmetric quantum wells, Superlattices and Microstructures,102, 391-398(2017). 17. Z. X. Xue, Y. Qu*, H. Xie and S. L. Ban, Transfer matrix method solving interface optical phonons in wurtzite core-multishell nanowires of III-nitrides. AIP Advances 6, 125207 (2016). 18. W. H. Liu, S. Yang, H. M. Feng, L. Yang, Y. Qu*, S.L. Ban, Effects of ternary mixed crystal and size on intersubband optical absorption in wurtzite InGaN/GaN core–shell nanowires. Superlattices and Microstructures, 83, 521–529 (2015). 19. J. Li, J. Y. Guan, S. F. Zhang, S. L. Ban and Y. Qu*, Effects of ternary mixed crystal and size on optical phonons in wurtzite nitride core-shell nanowires. Journal of Applied Physics, 115, 154305(2014). 20. Y. Qu and S.L. Ban, Ternary mixed crystal effect on electron mobility in a strained wurtzite AlN/GaN/AlN quantum well with an InxGa1-xN nanogroove. Journal of Applied Physics 110(1), 013722 (2011). 21. 屈媛,班士良. 纤锌矿氮化物量子阱中光学声子模的三元混晶效应。物理学报,59(7),4863-4873 (2010). 22. Y. Qu and S.L. Ban, Electron mobility in wurtzite nitride quantum wells limited by optical-phonons and its pressure effect. European Physics Journal B,69, 321–329 (2009) |